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3.1 Pa andRt for triangular input function

Suppose that sources are triangular stress pulses which originate and arrive at the transducer
input at timet = 0. The output due to such a stress pulse is given by (16) from which we get
the peak amplitudePa (i.e. maxgT (t)) as

Pa = CAT

∫ f 2

f 1

sin2(5f T/2)

(5f T/2)2
df. (20)

Similarly, the rise timeRt is given by

Rt = T/2. (21)

Equations (20) and (21) are proved in appendix A.

3.2 Pa andRt for gaussian input function

The output signal for Gaussian stress pulses (figure 7) is given by (17).Pa of this signal is
given by

Pa = maxgG(t) = 2
√

(25)CAσ

∫ f 2

f 1
exp[−σ 2452f 2/2] df. (22)

Equation (22) can be proved along the same lines as (20).Pa occurs uniquely att = t0 + 3σ .
Uniqueness ofPa can also be proved by the same line of arguments as for the triangular
function.

If we take, as in the case of the triangular input function, time origin as the instant when
the signal first appears at the transducer output, i.e., treatingt0 = 0, we getRt measured from
the origin as

Rt = 3σ.

Since the total duration or pulse width of the Gaussian pulse (figure 7) isT = 6σ . Hence the
equationRt = 3σ states thatRt as measured from the beginning of the signal is equal to half
the pulse widthT . That is,

Rt = T/2. (23)

This relationship betweenRt andT is the same as that between them in the case of the
triangular input, (21).

3.3 Pa andRt for rectangular and half cosine input functions

The output signal due to the rectangular input of figure 9 is given by (18). If the pulse
width T and the upper cut-off frequencyf2 are such thatf2T ≤ 1, i.e.5f2T ≤ 5 for all
f, f1 ≤ f ≤ f2, then sin5f t/5f t ≥ 0. Under this condition a closed-form expression for
Pa andRt analogous to those for triangular and Gaussian input functions can be obtained as

Pa = maxgR(t) = 2CAT

∫ f 2

f 1

sin5f T

5f t
df, (24)
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and

Rt = T/2. (25)

The output signal for half cosine input function of figure 10 is given by (19) and the function
cos5f T/

[
(5/T )2 − (25f )2

]
takes the positive maximum value when5f T = 0, and

crosses zero first when5f T = 35/2.
Suppose thatT andf2 are such that

5f2T ≤ 35/2, i.e.f2 ≤ 3/2T or T ≤ 3/2f2.

Under this condition cos5f T/
[
(5/T )2 − (25f )2

] ≥ 0 for all f, f1 ≤ f ≤ f2 and hence
Pa is given by

Pa = 4CA5

T

∫ f 2

f 1
cos5f T/(5/T )2 − (25f )2 df, (26)

and

Rt = T/2. (27)

In (25) and (27), it is assumed that the time origin is the instant when the signal first appears
at the transducer output.

4. Verification using simulated signals

Results given by (20), (22), (24) and (26) and the relationRt = T/2 do not exist, to the
best knowledge of the present authors, in signal processing, control system, or any other
related technical literature. In order to ascertain the validity of these equations, we simulated
signals by numerically integrating (16)–(19). The procedure adopted is the Gauss–Legendre
quadrature formula which is one of the most accurate numerical integration procedures.
Gauss–Legendre approximation for the integral of any functionf (x) over the interval(−1, 1)

is given by (Krylov 1966),

∫ 1

−1
f (x)dx ≈

N∑
i=1

wif (λi), (28)

whereN is the number of points or nodes,(λi) the zeros of the Legendre polynomial of degree
N , and [wi ] the appropriate weight factors.

∫ b

a
f (x)dx can be obtained from

∫ 1
−1 f (x)dx by

the transformation i.e.∫ b

a

f (x)dx = b − a

2

∫ 1

−1
f

[
b − a

2
y + a + b

2

]
dy.

The valuesf1 = 250 kHz andf2 = 500 kHz were mainly used to simulate the signals
using (16)–(19), the integrals were evaluated at equidistant points of 0.5 microseconds for a
maximum value of 100 microseconds. Transducer parameters defined in (10) were chosen as
f1 = 250 kHz, f2 = 500 kHz, C = 1 volt per microbar andt0 = 0. The number of nodes
N = 512 was found to be adequate because asN is increased from 48 to 512, the resulting
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Figure 11. Signal due to a triangular
sourceT = 17 microseconds andA = 1
microbar.

improvement in accuracy is not significant. [λi ] and [wi ] were obtained as per Stroud &
Secrest (1966).

Large data bases of signals were simulated by using these four stress pulses, viz., triangular,
Gaussian, rectangular and half cosine for three different pulse heights, viz., 1, 2, and 3 microbar
and pulse widths varying from 1 to 30 microseconds. Four typical examples of these signals
are shown in figurs 11–14.

Peak amplitude for triangular and Gaussian input pulses obtained by numerically inte-
grating (20) and (22) were found to be the same as the peak amplitude of simulated
signals, simulated using these input functions, there by proving the validity of these equa-

A
m

pl
itu

de
 (

m
V

)

Time (µs)
Figure 12. Signal due to a Gaussian source
T = 10 microseconds andA = 3 microbar.
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5. Significance of peak amplitude and rise time

The relation that pulse width is twice the rise time and the equations for peak amplitude, (20),
shows that rise time and peak amplitude contain complete information about triangular source
parameters. This is obvious from (20) which can be written, by rearranging and substituting
Rt = T/2, as

A = Pa/

[
CT

∫ f 2

f 1

sin2(5f Rt)

(5f Rt)2
df

]

This is true about Gaussian, rectangular (under the conditionf2 ≤ 1/T ), and half cosine
(under the conditionf2 ≤ 3/2T ) inputs. In brief, we can conclude from the foregoing that
peak amplitude and the rise time are significant parameters for source characterization.

6. Conclusion

Theoretical expressions for peak amplitude and rise time of acoustic emission signals are
derived. Correctness of these expressions are established using simulated signals. Inferences
drawn from these expressions justify the use of these parameters for acoustic emission source
characterization.

We thank Prof. Thomas Chacko of the languages section for going through the paper.

Appendix A

From (16) we get

gT (t) ≤ CAT

∫ f 2

f 1
|sin2(5f T/2)

(5f T/2)2
cos 25f [t − (t0 + T/2)]| df

≤ CAT

∫ f 2

f 1

sin2(5f T/2)

(5f T/2)2
| cos 25f [t − t0 + T/2)]| df

≤ CAT

∫ f 2

f 1

sin2(5f T/2)

(5f T/2)2
df, (A1)

dgt (t)

dt
= CAT

∫ f 2

f 1

sin2(5f T/2)

(5f T/2)2
(d/dt){cos 25f [t − (t0 + T/2)]}df,

that is,

dgT (t)

dt
= −2CAT

∫ f 2

f 1

sin2(5f T/2)

(5f T/2)2
sin 25f [t − (t0 + T/2)]5f df,

d2gT (t)

dt2
= −4CAT

∫ f 2

f 1

sin2(5f T/2)

(5f T/2)2
cos 25f [t − (t0 + T/2)](5f )df,



On using peak amplitude and rise time for AE source characterization 307

dgT (t)

dt
= 0 whent = t0 + T/2,

and

d2gT (t)

dt
< 0 att = t0 + T/2.

HencegT (t) has a maximum att = t0 + T/2 which is given by

gT (t0 + T/2) = CAT

∫ f 2

f 1

sin2(5f T/2)

(5f T/2)2
df. (A2)

By comparing (A2) with (A1) we find thatgT (t) attains its upper bound, given by (A1), at
t = t0 + T/2 thus completing the proof.

Assume that we have at = t ′ 6= t0 + T/2 such thatgT (t ′) = maxgT (t) = Pa. This
implies that cos 25f [t ′ − (t0 + T/2)] = 1, for all f1 ≤ f ≤ f2 (otherwisegT (t ′) <

CAT
∫ f 2
f 1 {[sin2(5f T/2)]/(5f T/2)2} df = Pa) implying that 25f [t − (t0 + T/2)] = 0

for all f1 ≤ f ≤ f2. This is impossible and hence, our assumption is wrong andPa occurs
uniquely att = t0 + T/2.

We have seen thatPa occurs att = t0 + T/2. Suppose we treat the instant when the signal
first appears at the transducer output as the time origin. This is equivalent to treating the
instant when the transient pulse is applied to the transducer as the time origin witht0 = 0.
Under this condition we get

Rt = T/2. (A3)
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