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Abstract. We introduce and study the universal norm distribution in this
paper, which generalizes the concepts of universal ordinary distribution
and the universal Euler system. We study the Anderson type resolution of
the universal norm distribution and then use this resolution to study the
group cohomology of the universal norm distribution.
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1. Introduction

Let r be a positive integer, theniversal ordinary distributiorof rank 1 and
levelr is well known to be the free abelian group

B ([d]:a € t2/7)
"l =X bl plra e B2y

With a naturalG, = Gal(Q(u,)/Q) action onU,, U, becomes a,-module
and plays a very important role in the study of cyclotomic fields, see for exam-
ple Lang [4] or Washington [10] for more information. In particular, the sign
cohomology ofU, gives key information about the indices of cyclotomic units
and Stickelberger ideals as illustrated by Sinnott’s original paper [9] and many
following papers on this subject by different authors. Thecohomology is
found to be related to the cyclotomic Euler system, as shown by Anderson-
Ouyang [1] about the Kolyvagin recursion in the universal ordinary distribu-
tion.

In the book [8], Rubin defined a generalization of the universal ordinary
distribution, which he called thaniversal Euler systenit then was used
to prove the Kolyvagin recursions satisfied by the Euler systems. However,
there are other universal objects satisfying similar distribution relations. In the
paper [6], we proposed a generalization of the universal ordinary distribution,
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have the following canonical decomposition

G.=[]6G.w-

x|z

Let N, be the sum of all elemenig € G, in the group ringZ[G.]. For z
finite andz’ | z, Let g denote the image of € G in G.. Let N be the
corresponding inflation map fro[G ] to Z[G.]. For every infinitez € Z,
let G, be the inverse limit of5, over all finitez |; z. ThenG; is actually the
direct product oG, for everyx | z.

Write B, = {[gz] : g € G.}, then

A=) B.={ls]: g € G..z € Zqn).

2€Zfin

andG, acts trivially in B, if x 1 z. ThusA and{G; : z € Zs,} are uniquely
determined by each other. L&t = |, . .., B foreveryz € Z.

For each paix € X andz € Z, the Frobenius element Fis a given element
in G whose restriction t@ . is the identity for every: € N.

Let O be an integral domain and l€t be its fractional field. LeZ be a
fixed Galgebra which is torsion free and finitely generated a®anodule.
We suppose thaf is a trivial G-module. For each € X, a polynomial

px;t) € 7 t]

is chosen corresponding to

2.2 Definition of the universal norm distribution

Let A be the freeZ7-module generated by, along with theG-action,
A becomes a torsion freE[G}module. LetB, be the7 [G}submodule ofA
generated by, as7 -module forz € Zsn. ThenB, is nothing but a free rank
17[G,}module with generator]. Let A, be the7[G}submodule generated
by A, as7-module for every; € Z. Thus.A, has a naturall [G_}module
structure for every |, z'.

Let A, be theT[G }homomorphism of4. given by

Ao - [T {g(x; FORT = N 021 ?f o Zi’
, if x|z.
LetD, be the submodule ofl, generated by the imagesiof,,(A./.«)) for
all x | z. Elements iriD, are calleddistribution relationsin A,. Theuniversal
norm distributionl/, according to the above assumptions is defined to be the
quotient7 [G,}module A, /D,, i.e., A, modulo all distribution relations.
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of f with respect to the Carlitz module. The Galois graup of K (f)/K is
known to be isomorphic toR/f)*. Thus we can identify every = o, € G
for some(a uniquey € (R/f)*. Theordinary distribution of levelf on the
function fieldK is defined to be a map

o %R/R —> Ab = abelian group
satisfying

$0) = 6. Vp | f.xe ZR/R.
py=x f
One can then talk about theniversal ordinary distributioras the universal
object to the category of ordinary distributions. As in the number theory coun-
terpart, by abusing notation, we say the group

([al:a € %R/R}
~(lal =X bl p | fra € ZR/R)

the universal ordinary distributiod/ is naturally equipped with & (-action

by sendingr,[a] = [xa]. The distributionU s, as shown to be a free abelian
group of ordel G ¢|, plays a similar role to the universal ordinary distribution
in the study of cyclotomic function field,

Now letG = Gx = Gal(K*??/K). Let X be the set of all monic irreducible
polynomials inK and theriZs, is nothing but the set of all monic polynomials
in R. Let A be the discrete s¢lg o f]: f € Zsin, g € G¢}. ThenG acts onA
by settingg o [ f] = [f]if g € Gk(y). Let p(g,t) =1 —1t for everyp € X.
For O = T= Z, we then can define the universal norm distribuihnas the
G s-module

Uy

([of1: f'Is fio €Gp)
(L=Fr, Do f 1= Niplof(D) f1: F( ' | foo € Gy

Proposition 3.4. The module®/, and{; are isomorphic a% s-modules by
identifying[1/f'] € Uy and[ f'] € Uy.

Ur =

Proof. The proof is similar to Proposition 3.1. One can easily check that: (1).
the map [¥f'] € Uy — [f'] € U, is well defined; (2). this map is & ;-
morphism; (3). surjective; (4). botti, andl{; haveZ-rank |G f|(the latter
follows from Proposition 4.1). O

3.6 Function field case: Il

We now work on more generality. L&t be a fixed function field. Pick a place
oo in K. Let R be the integer ring corresponding to the placeChoose a sign
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then L, becomes a gradefi[G,]-module. L, is bounded above since all its
non-negative components are 0. Moreover,is bounded if and only it is
finite.

With abuse of notation, denote hy,,), A, the homomorphisms d, inher-
iting from the homomorphisms i, bearing the same names. Now let

d:L.—> L. [a.y] — > ol yiwla y/x]

x|y

wherew is as defined in § 2.1. Cleardycommutes witlG ,-actions. A straight-
forward calculation shows that® = 0 and thereforel is a differential of
degree 1. Define afi[ G, ]-homomorphisnu : £, — U, by

[a]. ify=1
0, if y 1

[a, y] —

Regardl. as acomplexC? by the differentialZ, and regard/, as a complex
concentrated on 0-component. Then one can easily cheakithathomomor-
phism of complexes. Because of the following Theorem, we call the complex
(L2, d)(or simply £2) Anderson’s resolutioof the universal norm systed, .

Theorem 5.1. The homomorphism is a quasi-isomorphism, i.e., the com-
plex(L:, d) is acyclic for degree # 0 and H°(£;, d) = U, induced byu.

Proof. For anya € Bg N B.,.(y), consider the grade@-submoduleC; of £?
generated by

{rula, y'], wis z, wy' | y}.

One can see that} is d-stable. ThusC; is actually a subcomplex of?.
By Proposition 4.1,L?is the direct sum ofC; for a over Bop N A.. We
hence only have to study the compl€}. Now the theorem follows from
Lemma 5.2. O

5.2 The Koszul complexs

Let A be the polynomial ring
A=TZ]=() tz:t,eT.z€Z).

Let 6; be the Koszul complex of with the regular sequenog < --- < x,,
wherey = xp -+ - xp,. Thusf?;, is the graded exterior algebra

@ Aey
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with the symbol §"] is of degree: and the differential given by

(1—o,)[x" Y, ifn>0o0dd

0.0[x"] = )
colx'] Ny [x" 1, if n > 0 even

Now let P,, as the tensor product @t,,. over allx | z. P, is the so called
tensor projective resolutioof the trivial Z[ G .]-moduleZ with respect to the

cyclic decomposition
G, = 1_[ Gz(x) = l_l(az(x)>-

x|z x|z

Let [w] be an indeterminate for every € Z. Then the tensor resolutiah,
is the projectiveZ[ G ,]-resolution of the trivial modul& by

Pz,n = @ Z[GZ][w]
degul)zzn

and the differentiab, is given by
d[w] = D (=DXv= " Ma iy [w/x]
x|w

wherew,,, is equal too, ) — 1 if v,w odd andN,, if v,w even. For any
7' |y z, one has a natural inclusion &f, to P,, by sending {v] to [w].

6.3 G,-cohomology of trivial modulet

Let A be a freeO-module with trivial G,-structure. To compute it& -
cohomology, it suffices to compute the cohomology

I . = Homgg 1 (P.a, A) = €D Alw]

w finite
wlz

with the differential

Sofw] =) (D= a o [wx]

x|z
whereaq,,) is equal to 0 ifv,w even and tdG | if v,w odd. The inclusion
of P, to P, for 7’ |; z thus induces a projection froif . to 7} ... One see

that/y _ is a direct summand af _.
For any finitew with w | z, let

I = P Alw?/w],

w'|w
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We call the basigc(y, w) : y | w | z} given in Theorem 7.8, theanonical
basisfor H*(G, U,/ MU;). In particular, we write:(y, y) asc,. By the above
theorem, we see that for everye Z,

HYG U /MU) = (cy: y | D) /mr

is the union of allH%(G.,, U /MU.) with 7' |; z andZ’ finite. We'll use this
fact in Ouyang [7] for the double complgK **; d, ).

Remark 7.10. One can expect parallel result to Theorem B in Ouyang [5]
holds here too. The answer is yes. However, we feel more appropriate to state it
in Ouyang [7], as a natural consequence of the universal Kolyvagin recursion,
just like the proof of the above Theorem B in Anderson and Ouyang [1].
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