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The supremum in (2.9) is finite if

18:V; U(t, 0 W|| < |18, V|| |U(z,0) ¥ — e Ho" || + ||3,V, e Ho" @

is integrable ont ¢ € [0, co). By Assumption (2.5) this follows for the second term on
the r.h.s. for a total set of statéds .
For¥ = QF & we havet Ii+m U(r,0)* e ! § = ¢, Thus
—> 100

U@, 0) W —e ™ o = |¥ — U(r,0)* e @]

00 . 00 h
< / ds|| Vs e | :f ds )
s i 1+l

for some integrable functioh € L1([0, +oc0)) by Assumption (2.4). Using partial inte-
gration we conclude integrability:

o0 o0 o0
/ dt/ ds 1) =t/ ds 1)
0 : 1+ P 1+

Consequently, the time derivative (2.10) is integrable ar¢Q and the supremum (2.9)
is finite for a total set oft = Q% &, r > 0. The uniform boundedness for< 0 and
W = Q™ @ is proved similarly. O

=00

© t
dr——nh(t
=0 +/(; 1+[ ()

o
< / ds h(s) < oo.
0

Next we will give sufficient conditions which guarantee that (2.4) and (2.5) are satisfied.
For simplicity of presentation we use standard nonrelativistic kinematics (#gl)=
p2/2m. We will apply geometrical time-dependent methods. Then a convenient total set
Do C 'H consists of states with good localization in momentum spacep{®t denote
the momentum space wave function®dfand B,,,/3(mv) C R" the open ball of radius
muv/3 with centemmv € R”, v # 0, v = |v|. We choose the s@j as

Do = {®eH||P|=1 geCPRY), IveR", v#D0,
such that supp € By,,/3(mv)}.  (2.11)

Any statew with 1’/} € Cg°(R"), 0 ¢ suppfﬁ can be written as a finite linear combination
of vectors inDy. This set is dense iB2(RY) = H.

The states iy propagate mainly into regions whetce tp/m ~ tv,p € suppp. More
precisely, one shows with a stationary phase estimate that propagation into ‘classically
forbidden’ regions decays rapidly:

IF(Xx —tv|>p + |tlv/2) e oo < CyA+p+ 1DV, NeN,p >0,
(2.12)

with a constanCy = Cn(P) < oo (See, e.g., 8l of [4]). Similar estimates hold for other
kinematics. We will use this bound fer= 0 here and wittp > 0 in the last section.

While the estimate (2.12) follows from propagation of wave packets one has, in addition,
the standard estimate of spreadindrify

sup [(e 1" @y (x)] < C(®) L+ t))7V/?, (2.13)

x €R

whereC (®) < oo for & € Dy.
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Now we return to the rotating potentials (1.2) which are possiblei#n2 dimensions.
We will give sufficient conditions for the two dimensional case which is the ‘worst case’:
the falloff (2.13) is slowest and — compared &5 — the potential does not decay in
the direction parallel to the axis of rotation. We may use polar coordiriates in the
(x1, x2)-plane.

The potential can be decomposed into a rotationally invariant part

2 /o
Vilx) = %/O V('R(l‘)_lx) dr

and the resVnoninv = V — Vinv. The rotationally invariant part of the potential remains time-
independent. It need not be bounded nor differentiable and it does not show up in (2.5). If
for everyg € C3°(R) there is an integrable € L1([0, 00)) (e.9.,h(p) = C(A+ p)~17¢)
such that
h(p)
IViow 8(Ho) F(x| > o)l = 7 (2.14)
+p
then (2.4) is satisfied foVi,,: For ® € Dy chooseg € Cy°(R) such thatg(Ho)® = .
Then

| Vinv € /10" g(Ho) ®| < ||Viny g(Ho) F(|x| > |t|v/2)|| | ®]|
+ 1 Vinv g(Ho) | IIF(Ix| < [t]v/2) e Ho |

h(|tv/2) v, h®)
= Topz PO =10

with 1 € L' by (2.14) and (2.12).

Lemma2.2. Let V be Kato-bounded and let there exist an integrable function
h € L1([0, 00)) such that the potential satisfies the condition

p IV F(X| > p)ll = h(p) (2.15)
or one of the weaker conditions

p IV (Ho+ D™ F(Ix| > p)l| < h(p) (2.16)
or for everyg € C3°(R) there is an integrablé = i, with

p IV g(Ho) F(IX| > p)|l = h(p). (2.17)

Then the rotating potential; = V(R(r)~1) satisfieq2.4),i.e., for every® € Dg (2.11)
there is an integrablé such that

] |V, €7THo @) < h(lt]).

If the partial (distributional) azimuthal derivativ&ds V) (r, ¢) yields a bounded multipli-
cation operatordg V which satisfies

136V F(X| > p)|| < h(p) (2.18)
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or the weaker

196V (Ho+ 1)~ F(X| > p)|I < h(p) (2.19)
or for everyg € C3°(R)

104V g(Ho) F(IX| > p)|| < h(p) (2.20)
for some integrablé then(2.5)holds i.e., for every® € Dg there is an integrabl5 with

18, v, €7 Ho @] < h(le)).

Remarks.If (2.15) holds then it implies (2.16) and (2.17) because the regularizing factors
(Ho+ 1)~1 or g(Hy) act in configuration space as convolutions with a continuous rapidly
decreasing function. Thus the required decay rate is preserved. But even if the operators
on the l.h.s. of (2.15) are bounded the decay rate may be better in the regularized versions
(2.16) or (2.17): think of a sequence of ‘dipole’ pairs of peaks with maxima and minima of
equal amplitude but ‘closer and thinner’ pairs when they are localized farther away. Then
IV F(]X| > p)| does not decay but the convolution causes falloff due to cancellations.
The same applies to conditions (2.18)—(2.20).

A potential V (r, ¢) which in an angular sector behaves like

V(r, ¢) = cosr®g), r > 2, ¢p1 < ¢ < ¢,

r2 (Inr)?
satisfies in this region (2.15) and (2.18) for exponents® < 1 but the latter is violated
for o > 1. A behavior likew = 1 will show up in the next example.

Proof of Lemma.2. Since® € Dp has compact support in momentum space we may
chooseg € C3°(R) such thatg(Hp) ® = @. Due to rotational invariance dflo and x|
we have

Vi g(Ho) F(IX| > p)II = IV g(Ho) F(IX| > p)ll,
19: Vi g(Ho) F(IX| > p)|I = @ [135V g(Ho) F(IX| > p)l|.

To estimate (2.4) we use (2.17) and (2.12):

|V, e Ho @ < ||V g(Ho) F(IX| > |t|v/2)|| D]
+ IV g(Ho)ll I F(X| < |t]v/2) e "o g

1
< ————h(tlv/2) + O0(|t1|™Y).
= T3z (tlv/2) + O(t]™7)
Similarly, (2.20) and (2.12) yield (2.5).
In the case of regularization with a resolvent observe tit&t + 1)1 ®/|(Ho +
1)~! @|| € Dy has the same smoothness and support properties in momentum space as
D. O

Another geometrical configuration is described by a strongly anisotropic potential local-
ized near a hyperplane, in= 2 dimensions near a line. For simplicity we assume that
the support is bounded in the-direction, a sufficiently rapid decay would give the same
result. Moreover, we state the lemma for differentiable potentials in product form, the
generalization to less regular ones as in the previous lemma is straightforward.
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Lemma2.3. Let the potential V(x1,x2) = VO V@) e CLR? satisfy
suppV @ c [—d, d] and the bound

iV(l)(xl)
1

1/2
p'? sup ‘V(l)(xl)“f‘(l_) sup < h(p) (2.21)
+p

[x1]=p [x1]=p

for some integrablé. ThenV, = V (R(r)~1.) satisfies condition.4)and (2.5)for every
® e Do.

Proof. Up to rapidly decaying parts which do not affect the integrability the configuration
space wave function is localized in a moving disk and satisfies for |argjee estimate
_; const

(70 @)00] = == sy 00
by (2.12) and (2.13)p,,,, ,(:v) denotes the characteristic function&f ,2(tv). Thek-th
passage of a ‘tail’ of the rotating potential takes place araund kx/w and lasts less
than Z = n/w (for |t| > 5d/v). The area of intersection of the disk with the support of
the potential is bounded bywd|z| + ) and

1
@) _ 2
[V(X)| <sup V| o i = r)/zh(v(llkl 7)/2),
X € Bjrjv2(tV), [t] > || — 7.

For givenv andw we obtain for one passage (up to rapidly decaying terms)

e+t .
/ dt H v, e itHo ¢ H
th—T

nst
— {do(ln] +0)}2

(v (el +1)/2) ‘;0

1
<27 ———
v(te] +1)/2 |k |

const
< h(const|z|) (2.22)
|t + T

for large enoughk|. Since||V; e /Ho @ || is bounded on compact intervals the estimate
(2.22) shows (2.4).

With 3,V, = w[x201V — x182V ](R(z)~ 1) the first summand yields a bound on
Byt v2V), It = |tx| — T,

o sup|x2 V@ (xa)| [v (1] = 7)/212 h(v (1] = 7)/2)
x2

by (2.21) while the second is bounded there by

3v (Il —1)/2

w Sup v (ltk| _ ‘[)/2]1/2 h(U (|tk| - 'L')/2)

X2

d e
dsz (xz)’ [

Combining these estimates as above shows (2.5). O

Our third example demonstrates how dimensions strictly larger than two help if the
potential decays in the other directions. For simplicity we assume 3 and compact
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supportinthe vertical direction (parallel to the axis of rotation) of a differentiable potential.
Note that we do not need any falloff in the plane of rotation to show boundedness of the
kinetic energy for asymptotically free scattering states. (The existence of wave operators
follows easily for such potentials but one will need additional assumptions for asymptotic
completeness.)

Lemma2.4. LetV e CL(R3) have bounded!-norm and satisfpuppV C {x € R® |
|x3| < d}. Then(2.4)and (2.5) are satisfied.

Proof. LetDg be the total set of states wighe C8°(IR<3), for which there exists a constant
b > 0 such that either supp C {p € R3 | p3 > mb} or suppg C {p € R? | p3 <
—mb}. Then || F(|x3| < |t|b/2) e iHo ®| = O(|r|V) and conditions (2.4) and (2.5)
follow. O

To sum up the results of this section: If one knows (using any method) unitarity of the
scattering operator or even asymptotic completeness and if the potential can be split into a
sum of terms which satisfy any of the above sulfficient conditions, then the kinetic energy
is bounded uniformly in time in both time-directions simultaneously on the corresponding
subspace of asymptotically free scattering states.

3. Evolution in a rotating frame

Here we study the time evolution in a rotating frame for potentials which no longer have
to be smooth. This transformation yields an explicit formula for the propad@éadars) in

terms of the unitary group for some time-independent generator. This will allow to apply
methods of stationary scattering theory to show existence and completeness of the wave
operators in 8§ 4.

Let R(t) — R(t) be the standard unitary representation of the one-parameter
group R(t) in L2(RY), i.e., (ROY)(x) = ¥(R()1x). Let wJ denote its gen-
erator, R(t) = exp{—iwtJ}. On a suitable domain the operatdris of the form
x1(—i0/0x2) — x2(—id/dx1) or —id/d¢ if one uses cartesian or polar coordinates,
respectively, in thay, x>-plane.

For an observer in a rotating reference frame which turns around the orgin like the
potential the latter becomes time-independent

V, = R(t) V R(t)* — R(t)* V, R(t) = V.

Let t — W(t) = Uinert(t, s) ¥(s) beanytime evolution in the given inertial frame with
propagatoUinert. Then an observer in the rotating frame will see

R(1)* W(t) = R(t)" Uinen(t, s) W(s) = R(t)* Uinen(t, s) R(s) R(s)* W(s)
with propagator

Urot(t, s) = R(t)* Uinent(t, ) R(s). (3.1)
The free time evolution of a state then becomes

R(t)* e—ilHo \II — eitw] e—ilHo \ij (32)
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where e/Ho y is the free time evolution in the inertial frame generated4gyas in (1.1)
(or any other spherical free Hamiltonian like the relativistic one). Time zeré 2at/w,
k € z) is singled out by the fact that the rotating and inertial frames coincide and the fixed
potentialV;|;—o = V has been picked out of the fami¥y for this reference time. Although
the free time evolution is rotation invariant we have a different ‘unperturbed’ evolution
which combines the unchanged free evolution with the rotation. Instead of a motion with
constant velocity the unperturbed motion now is along spirals.

As the groups in (3.2) commute their product is again a unitary group with a self-adjoint
generator denoted b¥,,

gl g-itHy _. g=itH,

Formally we have
H, = Hyo— wJ (3.3)

but the domains differ. All three operators are essentially self-adjoint on each of the sets
D:={VeH|¥eCPR")}C SR C D(Ho) ND(), (3.4)

whereD is the set of states with smooth compactly supported wave functions in momentum
spaceS(R") the Schwartz space of smooth rapidly decreasing functions (in configuration
or momentum space) afie( A) denotes the domain of a self-adjoint operatoAll these
sets are cores because they are dende{R”) and invariant under each of the groups
(see, e.g., ([13], Theorem VIII. 11)).

The operator (3.3) has been previously studied by Tip [15] in connection with the circular
AC Stark effect. LetP;, j € z denote the projection onto the eigenspace obince Hg
andJ commute, the subspace§ = P;H are invariant subspaces féf, such that

sz@Hw,;‘ =@(H0j_wj)-

jel jel

In the momentum representati@fy; is a real multiplication operator and consequently
H,,; with domainD; = (H,, ; —i)"*H; C H, is self-adjoint ort;. Let now

D(H,) = {f =D
J

with || - || ; being the norm irf{;. The operato#,, with the domairD(H,,) can be easily
shown to be self-adjoint. Its domain is rotational invari&tit) D(H,,) = D(H,) and the
operator commutes with rotations.

The setD(H,,) is strictly larger tharD(Hp) N D(J). Indeed, consider a stalley € H
with || Wp|| = 1 which in the momentum representation is given by the funa}z\i@ﬁ Cy°.
We assume that

fi €D Y N Haj fill5 < oo}
J

suppyo C {p € R” | Ip| < 1/2)

and%(p) is rotational symmetric such thétp; |%(p)|2 dp =0.Forn e Nandw # 0
consider the sequence of normalized pairwise orthogonal vectérg{3m)

p2
2m w

Von(p) = exp{in } Yo(p — ney),
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Lemma3.l. Let F = x1,x2,...,x, be of finite rankm and R normal in F. If
51,82, ... ,8p are non-identity elements & 5,41 € RN j(F)withp+j=n(n,j>1)
and is any non-zero integer such that

(51— D2 =1 (sp = Vs, — D € I"TH(F),
thenSpJ,_l eRN ]+1(F)

Proof. We may assume that/R admits a pre-Abelian presentation whe&és the nor-
mal closureR = x;* 1, %% 2, ..., X" my m4ls m42s - L With ] po1fooo] 1>

0, ;e F/',fori =1,2,... ([8], 83.3). WriteR = sgp{r1,r2, ..., Fm, rma1, 'ma2, - - - h
wherer; = x;' ;forl <i < mandr; € F' fori > m + 1. We prove the result by
induction onn. The caser = 1 follows easily. Assuming that the result holds for 1,
we prove the result fat by induction onp. For p = 0, the result is a consequence of the
facts that(n + 1)st dimension subgroup &f is ,+1(F)andRN ,(F)/RN ,1(F)is
torsion-free. Lek, =17 (modR’), then modula/"+1(F),

0 (1—=D2=D-(5p—Dls,y— D
D i =Disz—=1D - (sp = D(s, 1 =D

i>1

Z(xl.i i — 1)(S2 — 1) e (sp _ 1)(sp:’l_ll _ 1)

i=1

(i =Dz =D = D5,y = D). (3.1)

i=1

Sincel (F) is afree right F-module with{x; — 1|1 < i < m} as a basis, it follows from
(3.1) that

(s2=D(s3 =1 - (s5p = Vs, " = 1) € I"(F),

foralli, 1 <i < m. The result now follows by induction hypothesesmand p.
Theorem 3.2.If R, p andj are as in Lemma&.1, then

I"YFNIP(RIR N j(F)) =P RIRN (F))
+I(RONFYIPTYRYI(RN j(F) +IP(RI(RN j11(F)).

Proof. We can suppose, by a standard reduction argumentftigbf finite rankm and
F/R admits a pre-Abelian presentation as in Lemma 3.1. Lett"*1(F)NIP(R)I (RN
;(F)), then moduld P*Y(R)I (RN j(F)) + I(RNFYIP~YR)YI(RN ;(F)),

D i = Disai = -+ (spi = Disprni — D,

i>1

(ki € R,2<k <p and s,11; € RN ;(F))
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m
Z(x,-’ i— D2 =1 (spi —Dsprni — D (3.2)
i=1

D 0 = Doz = 1)+ (5pi = D(s(higy — D
i=1

(mod I2(F)I""YR)YI(RN ;(F)))
0 (mod I"*Y(F)). (3.3)

1(F) being free right F-module, it follows from (3.3) that
(520 = 1)~ (spi — 1)(3(;,+1)i -1 el"(F),

foralli, 1 <i < m. Therefore, by Lemma 3.1,,1), € RN ;41(F) foralli and hence

e I"YRYI(RN j(F)+I(RNFYI"XRI(RN ;(F))
+IP(RI(RN j1(F)).

The other way inclusion is straightforward.

Proof of Theoreni.1. The proof follows by taking = 1 in Theorem 3.2 and by the fact
that

IRNFY"NR) C Y "R i(R) N i41(F))
i=1
c I""YF)y NI (R).
Proof of Theoreni.2. Splitting of the exact sequence (1.1) implies that the sequence

1- G/HG' HNG'/H — G/HG H/H
- G/HG' H/HNG — 1

is split exact. Karan and Vermani [6] proved that
G/HG' H/H = I1(G)I(H)/(I>(G)I(H) + I*(H)).
Using similar arguments, we can prove that

G/HG' H/HNG =1(G)I(H)/(IXG)I(H)
+ I(G)I(HNG') + I’(H)).

Let v be the restriction of (as defined in [6], Theorem 2.7) ®/HG' HNG’'/H'.
Theny is one-one and

Imy = (I2(G)I(H) + [(G)I(HNG') + I>(H))/(I>(G)I (H) + I*(H)).



294 Ram Karan and Deepak Kumar

Hence we have the commutative diagram

G HNG' G H G H
G H ™ wme W - HG AN
2(G) I (H)+I (G (HNG+I%(H) LG (H) . L(G)I(H)
12(G)I (H)+12(H) I12(G)I (H)+12(H) I12(G)I (H)+1(G)I (HNG)+I%2(H) "
Therefore
G HNG' _ I*G)I(H)+ I(G)I(HNG')+ I*(H)
HG' H I12(G)I(H) + I%2(H)
~ I(GIHNG)
T 2GIH)+I2HHYNIGIHNG)'
Also
G HNG' _ I(GIHNG)
HG' H — RGIHNG)Y+IGIH)+IH)IHNG)

and we have the commutative diagram

G HNG' _ G HNG'
HG " = HG "
1(G)I(HNG') 1(G)I(HNG")

T2G)IHNGH (G (H)+TIHNG) = (T2G)I (H)+I2(H)NI(G)I(HNG)
wherern is the natural projection. An easy diagram chasing showsnthisita monomor-
phism. This completes the proof.

COROLLARY 3.3
If G and H are as in Theorem..2, then

(I*(G)I(H) + I(G)I(H N G')) N I*(H)
=I(H)I(HNG)+ I*(G)I(H) N I*(H).

If R is any subgroup of, then the exact sequence:> RN F'/R" — R/R —
R/R N F' — 1 splits and the intersectiol*(F) N I%(R) can then be deduced from
Corollary 3.3 by taking intersection vie( F)I (R).

Theorem 3.4. If R and S are subgroups of’, then

FI(R)I(F)I(S)NI*RF N S)
=IBRF NS +1( 2RHNHIRT NS+ IR NSHIRFNS).



Intersections and identifications in integral group rings 295

Proof. Observe that

FI(R)I(F)I(S)NT*’(RF N'S)
= FIRIFIS)NIRFNSIS)NIARFNS)
=( FIRIF)NIRINS) HIES)NI*’RF NS,
FI(S) being free left F-module
=R NSHIS)+ FIRIF)NIRF NnSHIES)NIZRFNS).
(3.4)

Letx e FI(R)I(F)NI(RF nS)andletx =Y, m;(a; — 1), wherea; € RF N S.
Takeh = ;a",thenh —1 x (modI%(RF NS)). Thush —1e FI(R)I(F)and
thereforeh € 2(RF)N S, by [5], Theorem 2.3. This, then implies that 12(RF N S) +
I( 2(RT) N S) and therefore by (3.4)

FI(R)I(F)I(S)NI*(RF N S)
= (IR NSHI?S) +I1( 2ARTYNSHIS) NIARF NS)
=IPRIFNS)+I1( 2RHNHIRTF NS+ IR NIRRT NS,

by Theorem 2.3.

4. |dentifications

We first prove the following:

Lemmad.1. If R and S are normal subgroups of' such thatF/R and F/S are free-
Abelian, then

FON@A+I3F)+ I(F)I(R) + I(F)I(S)) = 3(F)R'S'[R, S].

Proof. Observe that r.h.s. is contained in |.h.s.. For the reverse inequality we tak&
such that — 1 € I3(F) + I(F)I(R) + I(F)I(S) and move on to show that

1 (mod 3(F)R'S'[R, S]). SinceF/F’ is free-Abelian, it follows that each @t/ F’ and
S/F’is a direct summand of / F’. We first choose a basig, x2, ..., x], x5, ... for F
suchthaiky, x5, ... is abasis foR (moduloF’). By [9, Theorem 3.11], < [R, F][S, F]
and modulo §, F],

[xi. fil. (4.1)
1

i>

where f; € F and therefore modul®(F) + I(F)I(R) + I (F)I(S),

0o -1
S (G = D~ D~ (fi — D, — 1)
i>1
> - (i - D. 4.2)

i1
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Thereforeif e FN(+1(R)I3(F)) C FN(14+1(R)I(F)) = R’ ([5, Proposition 2.1]),
then by (4.6)

ERNA+T*R) + I2(RI(RNF)Y+I(RI(RN 3(F))).

SinceR/R N F' is free-Abelian, using Theorem 2.2 and the filtration magve make
belong to

(RNFYNA+I3RNF)Y+I(RYI(RNF)
+I(RNFHI(RN 3(F))) a(R).

Now using similar arguments as in the proof of Theorem 1.3, we can show that

€ 4(R) 2(RN 3(FHIRNF',R'N 3(F)].

The reverse inclusion being trivial, we have

FOQ+I(RIPF) = 4(R) 2RN s(FN[RNF, RN 3(F)].
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