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The supremum in (2.9) is finite if

‖∂tVt U(t, 0) 9‖ ≤ ‖∂tVt‖ ‖U(t, 0) 9 − e−iH0t 8‖ + ‖∂tVt e−iH0t 8‖

is integrable on± t ∈ [0,∞). By Assumption (2.5) this follows for the second term on
the r.h.s. for a total set of states9.

For9 = �± 8 we have lim
t→+∞U(t, 0)

∗ e−iH0t 8 = 9. Thus

‖U(t, 0) 9 − e−iH0t 8‖ = ‖9 − U(t, 0)∗ e−iH0t 8‖
≤

∫ ∞

s

ds‖Vs e−iH0s 8‖ =
∫ ∞

t

ds
h(s)

1 + |s|
for some integrable functionh ∈ L1([0,+∞)) by Assumption (2.4). Using partial inte-
gration we conclude integrability:∫ ∞

0
dt

∫ ∞

t

ds
h(s)

1 + s
= t

∫ ∞

t

ds
h(s)

1 + s

∣∣∣t=∞
t=0

+
∫ ∞

0
dt

t

1 + t
h(t)

≤
∫ ∞

0
ds h(s) < ∞.

Consequently, the time derivative (2.10) is integrable on [0,∞) and the supremum (2.9)
is finite for a total set of9 = �+ 8, t ≥ 0. The uniform boundedness fort ≤ 0 and
9 = �− 8 is proved similarly. 2

Next we will give sufficient conditions which guarantee that (2.4) and (2.5) are satisfied.
For simplicity of presentation we use standard nonrelativistic kinematics (1.1),H0 =
p2/2m. We will apply geometrical time-dependent methods. Then a convenient total set
D0 ⊂ H consists of states with good localization in momentum space. Letϕ̂(p) denote
the momentum space wave function of8 andBmv/3(mv) ⊂ R

ν the open ball of radius
mv/3 with centermv ∈ R

ν , v 6= 0, v = |v|. We choose the setD0 as

D0 := {8 ∈ H | ‖8‖ = 1, ϕ̂ ∈ C∞
0 (R

ν), ∃v ∈ R
ν, v 6= 0,

such that supp̂ϕ ⊆ Bmv/3(mv)}. (2.11)

Any state9 with ψ̂ ∈ C∞
0 (R

ν), 0 /∈ suppψ̂ can be written as a finite linear combination
of vectors inD0. This set is dense inL2(Rν) = H.

The states inD0 propagate mainly into regions wherex ≈ tp/m ≈ tv,p ∈ supp̂ϕ. More
precisely, one shows with a stationary phase estimate that propagation into ‘classically
forbidden’ regions decays rapidly:

‖F(|x − tv|≥ρ + |t |v/2) e−itH08‖ ≤ CN(1 + ρ + |t |)−N,N ∈ N, ρ ≥ 0,
(2.12)

with a constantCN = CN(8) < ∞ (see, e.g., §II of [4]). Similar estimates hold for other
kinematics. We will use this bound forρ = 0 here and withρ > 0 in the last section.

While the estimate (2.12) follows from propagation of wave packets one has, in addition,
the standard estimate of spreading inR

ν ,

sup
x ∈R

ν
|(e−iH0t 8)(x)| ≤ C(8) (1 + |t |)−ν/2, (2.13)

whereC(8) < ∞ for 8 ∈ D0.
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Now we return to the rotating potentials (1.2) which are possible inν ≥ 2 dimensions.
We will give sufficient conditions for the two dimensional case which is the ‘worst case’:
the falloff (2.13) is slowest and – compared toR

3 – the potential does not decay in
the direction parallel to the axis of rotation. We may use polar coordinates(r, φ) in the
(x1, x2)-plane.

The potential can be decomposed into a rotationally invariant part

Vinv(x) := ω

2π

∫ 2π/ω

0
V (R(t)−1x) dt

and the restVnoninv = V−Vinv. The rotationally invariant part of the potential remains time-
independent. It need not be bounded nor differentiable and it does not show up in (2.5). If
for everyg ∈ C∞

0 (R) there is an integrablẽh ∈ L1([0,∞)) (e.g.,̃h(ρ) = C(1+ ρ)−1−ε)
such that

‖Vinv g(H0) F (|x| > ρ)‖ ≤ h̃(ρ)

1 + ρ
, (2.14)

then (2.4) is satisfied forVinv: For8 ∈ D0 chooseg ∈ C∞
0 (R) such thatg(H0)8 = 8.

Then

‖Vinv e−iH0t g(H0) 8‖ ≤ ‖Vinv g(H0) F (|x| > |t |v/2)‖ ‖8‖
+ ‖Vinv g(H0)‖ ‖F(|x| < |t |v/2) e−iH0t8‖

≤ h̃(|t |v/2)
1 + |t |v/2 +O(|t |−N) = h(t)

1 + |t |
with h ∈ L1 by (2.14) and (2.12).

Lemma2.2. Let V be Kato-bounded and let there exist an integrable function
h ∈ L1([0,∞)) such that the potentialV satisfies the condition

ρ ‖V F(|x| > ρ)‖ ≤ h(ρ) (2.15)

or one of the weaker conditions

ρ ‖V (H0 + 1)−1 F(|x| > ρ)‖ ≤ h(ρ) (2.16)

or for everyg ∈ C∞
0 (R) there is an integrableh = hg with

ρ ‖V g(H0) F (|x| > ρ)‖ ≤ h(ρ). (2.17)

Then the rotating potentialVt = V (R(t)−1·) satisfies(2.4), i.e., for every8 ∈ D0 (2.11)
there is an integrablẽh such that

|t | ‖Vt e−itH0 8‖ ≤ h̃(|t |).
If the partial (distributional) azimuthal derivative(∂φV )(r, φ) yields a bounded multipli-
cation operator∂φV which satisfies

‖∂φV F(|x| > ρ)‖ ≤ h(ρ) (2.18)
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or the weaker

‖∂φV (H0 + 1)−1 F(|x| > ρ)‖ ≤ h(ρ) (2.19)

or for everyg ∈ C∞
0 (R)

‖∂φV g(H0) F (|x| > ρ)‖ ≤ h(ρ) (2.20)

for some integrableh then(2.5)holds, i.e., for every8 ∈ D0 there is an integrablẽh with

‖∂tVt e−itH0 8‖ ≤ h̃(|t |).
Remarks.If (2.15) holds then it implies (2.16) and (2.17) because the regularizing factors
(H0 + 1)−1 or g(H0) act in configuration space as convolutions with a continuous rapidly
decreasing function. Thus the required decay rate is preserved. But even if the operators
on the l.h.s. of (2.15) are bounded the decay rate may be better in the regularized versions
(2.16) or (2.17): think of a sequence of ‘dipole’ pairs of peaks with maxima and minima of
equal amplitude but ‘closer and thinner’ pairs when they are localized farther away. Then
‖V F(|x| > ρ)‖ does not decay but the convolution causes falloff due to cancellations.
The same applies to conditions (2.18)–(2.20).

A potentialV (r, φ) which in an angular sector behaves like

V (r, φ) = 1

r2 (ln r)2
cos(rα φ), r > 2, φ1 < φ < φ2,

satisfies in this region (2.15) and (2.18) for exponents 0≤ α ≤ 1 but the latter is violated
for α > 1. A behavior likeα = 1 will show up in the next example.

Proof of Lemma2.2. Since8 ∈ D0 has compact support in momentum space we may
chooseg ∈ C∞

0 (R) such thatg(H0) 8 = 8. Due to rotational invariance ofH0 and|x|
we have

‖Vt g(H0) F (|x| > ρ)‖ = ‖V g(H0) F (|x| > ρ)‖,
‖∂tVt g(H0) F (|x| > ρ)‖ = ω ‖∂φV g(H0) F (|x| > ρ)‖.

To estimate (2.4) we use (2.17) and (2.12):

‖Vt e−itH0 8‖ ≤ ‖V g(H0) F (|x| > |t | v/2)‖ ‖8‖
+ ‖V g(H0)‖ ‖F(|x| < |t | v/2) e−itH0 8‖

≤ 1

1 + |t | v/2 h(|t | v/2)+O(|t |−N).

Similarly, (2.20) and (2.12) yield (2.5).
In the case of regularization with a resolvent observe that(H0 + 1)−1 8/‖(H0 +

1)−1 8‖ ∈ D0 has the same smoothness and support properties in momentum space as
8. 2

Another geometrical configuration is described by a strongly anisotropic potential local-
ized near a hyperplane, inν = 2 dimensions near a line. For simplicity we assume that
the support is bounded in thex2-direction, a sufficiently rapid decay would give the same
result. Moreover, we state the lemma for differentiable potentials in product form, the
generalization to less regular ones as in the previous lemma is straightforward.
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Lemma2.3. Let the potentialV (x1, x2) = V (1)(x1) V
(2)(x2) ∈ C1(R2) satisfy

suppV (2) ⊂ [−d, d] and the bound

ρ1/2 sup
|x1|≥ρ

∣∣∣V (1)(x1)

∣∣∣ +
(

1

1 + ρ

)1/2

sup
|x1|≥ρ

∣∣∣∣ d

dx1
V (1)(x1)

∣∣∣∣ ≤ h(ρ) (2.21)

for some integrableh. ThenVt = V (R(t)−1·) satisfies conditions(2.4)and(2.5)for every
8 ∈ D0.

Proof. Up to rapidly decaying parts which do not affect the integrability the configuration
space wave function is localized in a moving disk and satisfies for large|t | the estimate∣∣∣(e−itH0 8

)
(x)

∣∣∣ ≤ const

|t | χB|t | v/2(tv)(x)

by (2.12) and (2.13).χB|t | v/2(tv) denotes the characteristic function ofB|t | v/2(tv). Thek-th
passage of a ‘tail’ of the rotating potential takes place aroundtk = kπ/ω and lasts less
than 2τ = π/ω (for |t | > 5d/v). The area of intersection of the disk with the support of
the potential is bounded by dv (|tk| + τ) and

|V (x)| ≤ sup |V (2)| 1

v (|tk| − τ)/2
h(v (|tk| − τ)/2),

x ∈ B|t | v/2(tv), |t | ≥ |tk| − τ.

For givenv andω we obtain for one passage (up to rapidly decaying terms)∫ tk+τ

tk−τ
dt

∥∥∥Vt e−itH0 8

∥∥∥
≤ 2τ

1

v (|tk| + τ)/2
h(v (|tk| + τ)/2)

const

|tk| − τ
{dv(|tk| + τ)}1/2

≤ const

|tk| + τ
h(const|tk|) (2.22)

for large enough|k|. Since‖Vt e−itH0 8‖ is bounded on compact intervals the estimate
(2.22) shows (2.4).

With ∂tVt = ω [ x2∂1V − x1∂2V ](R(t)−1·) the first summand yields a bound on
B|t | v/2(tv), |t | ≥ |tk| − τ ,

ω sup
x2

∣∣∣x2V
(2)(x2)

∣∣∣ [ v (|tk| − τ)/2 ]1/2 h(v (|tk| − τ)/2)

by (2.21) while the second is bounded there by

ω sup
x2

∣∣∣∣ d

dx2
V (2)(x2)

∣∣∣∣ 3v (|tk| − τ)/2

[v (|tk| − τ)/2]1/2
h(v (|tk| − τ)/2).

Combining these estimates as above shows (2.5). 2

Our third example demonstrates how dimensions strictly larger than two help if the
potential decays in the other directions. For simplicity we assumeν = 3 and compact
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support in the vertical direction (parallel to the axis of rotation) of a differentiable potential.
Note that we do not need any falloff in the plane of rotation to show boundedness of the
kinetic energy for asymptotically free scattering states. (The existence of wave operators
follows easily for such potentials but one will need additional assumptions for asymptotic
completeness.)

Lemma2.4. LetV ∈ C1(R3) have boundedC1-norm and satisfysuppV ⊂ {x ∈ R
3 |

|x3| ≤ d}. Then(2.4)and (2.5)are satisfied.

Proof. LetD0 be the total set of states witĥϕ ∈ C∞
0 (R

3), for which there exists a constant
b > 0 such that either supp̂ϕ ⊂ {p ∈ R

3 | p3 > mb} or suppϕ̂ ⊂ {p ∈ R
3 | p3 <

−mb}. Then‖F(|x3| < |t |b/2) e−itH0 8‖ = O(|t |−N) and conditions (2.4) and (2.5)
follow. 2

To sum up the results of this section: If one knows (using any method) unitarity of the
scattering operator or even asymptotic completeness and if the potential can be split into a
sum of terms which satisfy any of the above sufficient conditions, then the kinetic energy
is bounded uniformly in time in both time-directions simultaneously on the corresponding
subspace of asymptotically free scattering states.

3. Evolution in a rotating frame

Here we study the time evolution in a rotating frame for potentials which no longer have
to be smooth. This transformation yields an explicit formula for the propagatorU(t, s) in
terms of the unitary group for some time-independent generator. This will allow to apply
methods of stationary scattering theory to show existence and completeness of the wave
operators in § 4.

Let R(t) 7→ R(t) be the standard unitary representation of the one-parameter
group R(t) in L2(Rν), i.e., (R(t)ψ)(x) = ψ(R(t)−1x). Let ωJ denote its gen-
erator,R(t) = exp{−iωtJ }. On a suitable domain the operatorJ is of the form
x1(−i∂/∂x2) − x2(−i∂/∂x1) or −i∂/∂φ if one uses cartesian or polar coordinates,
respectively, in thex1, x2-plane.

For an observer in a rotating reference frame which turns around the orgin like the
potential the latter becomes time-independent

Vt = R(t) V R(t)∗ −→ R(t)∗ Vt R(t) = V.

Let t 7→ 9(t) = Uinert(t, s)9(s) beany time evolution in the given inertial frame with
propagatorUinert. Then an observer in the rotating frame will see

R(t)∗9(t) = R(t)∗ Uinert(t, s)9(s) = R(t)∗ Uinert(t, s) R(s) R(s)
∗9(s)

with propagator

Urot(t, s) = R(t)∗ Uinert(t, s) R(s). (3.1)

The free time evolution of a state then becomes

R(t)∗ e−itH0 9 = eitωJ e−itH0 9, (3.2)
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where e−itH0 9 is the free time evolution in the inertial frame generated byH0 as in (1.1)
(or any other spherical free Hamiltonian like the relativistic one). Time zero (ork 2π/ω,
k ∈ Z) is singled out by the fact that the rotating and inertial frames coincide and the fixed
potentialVt |t=0 = V has been picked out of the familyVt for this reference time. Although
the free time evolution is rotation invariant we have a different ‘unperturbed’ evolution
which combines the unchanged free evolution with the rotation. Instead of a motion with
constant velocity the unperturbed motion now is along spirals.

As the groups in (3.2) commute their product is again a unitary group with a self-adjoint
generator denoted byHω

eiωJ e−itH0 =: e−itHω .

Formally we have

Hω = H0 − ωJ (3.3)

but the domains differ. All three operators are essentially self-adjoint on each of the sets

D := {9 ∈ H | ψ̂ ∈ C∞
0 (R

ν)} ⊂ S(Rν) ⊂ D(H0) ∩ D(J ), (3.4)

whereD is the set of states with smooth compactly supported wave functions in momentum
space,S(Rν) the Schwartz space of smooth rapidly decreasing functions (in configuration
or momentum space) andD(A) denotes the domain of a self-adjoint operatorA. All these
sets are cores because they are dense inL2(Rν) and invariant under each of the groups
(see, e.g., ([13], Theorem VIII. 11)).

The operator (3.3) has been previously studied by Tip [15] in connection with the circular
AC Stark effect. LetPj , j ∈ Z denote the projection onto the eigenspace ofJ . SinceH0
andJ commute, the subspacesHj = PjH are invariant subspaces forHω such that

Hω =
⊕
j∈Z

Hω,j =
⊕
j∈Z

(
H0j − ωj

)
.

In the momentum representationH0j is a real multiplication operator and consequently
Hω,j with domainDj = (Hω,j − i)−1Hj ⊂ Hj is self-adjoint onHj . Let now

D(Hω) :=
{
f =

⊕
j

fj

∣∣∣∣ fj ∈ Dj ,
∑
j

‖Hω,j fj‖2
j < ∞

}

with ‖ · ‖j being the norm inHj . The operatorHω with the domainD(Hω) can be easily
shown to be self-adjoint. Its domain is rotational invariantR(t)D(Hω) = D(Hω) and the
operator commutes with rotations.

The setD(Hω) is strictly larger thanD(H0) ∩ D(J ). Indeed, consider a state90 ∈ H
with ‖90‖ = 1 which in the momentum representation is given by the functionψ̂0 ∈ C∞

0 .
We assume that

suppψ̂0 ⊂ {p ∈ R
ν | |p| < 1/2}

andψ̂0(p) is rotational symmetric such that
∫
p1 |ψ̂0(p)|2 dp = 0. Forn ∈ N andω 6= 0

consider the sequence of normalized pairwise orthogonal vectors inD (3.4)

ψ̂ω,n(p) := exp
{
in

p2

2mω

}
ψ̂0(p − ne1),
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Lemma3.1. Let F = hx1, x2, . . . , xmi be of finite rankm and R normal in F . If
s1, s2, . . . , sp are non-identity elements ofR, sp+1 ∈ R∩γj (F )withp+j = n (n, j ≥ 1)
andq is any non-zero integer such that

(s1 − 1)(s2 − 1) · · · (sp − 1)(sqp+1 − 1) ∈ In+1(F ),

thensp+1 ∈ R ∩ γj+1(F ).

Proof. We may assume thatF/R admits a pre-Abelian presentation whereR is the nor-
mal closureR = hxe11 �1, x

e2
2 �2, . . . , x

em
m �m, �m+1, �m+2, . . . iF with em|em−1| · · · |e1 ≥

0, �i ∈ F ′, for i = 1, 2, . . . ([8], §3.3). WriteR = sgp{r1, r2, . . . , rm, rm+1, rm+2, . . . },
whereri = x

ei
i �i for 1 ≤ i ≤ m andri ∈ F ′ for i ≥ m + 1. We prove the result by

induction onn. The casen = 1 follows easily. Assuming that the result holds forn − 1,
we prove the result forn by induction onp. Forp = 0, the result is a consequence of the
facts that(n+ 1)st dimension subgroup ofF is γn+1(F ) andR ∩ γn(F )/R ∩ γn+1(F ) is
torsion-free. Lets1 � Q

i≥1 r
mi
i (modR′), then moduloIn+1(F ),

0 � (s1 − 1)(s2 − 1) · · · (sp − 1)(sqp+1 − 1)

�
∑
i≥1

(ri − 1)(s2 − 1) · · · (sp − 1)(sqmip+1 − 1)

�
m∑
i=1

(x
ei
i �i − 1)(s2 − 1) · · · (sp − 1)(sqmip+1 − 1)

�
m∑
i=1

(xi − 1)(s2 − 1) · · · (sp − 1)(sqmieip+1 − 1). (3.1)

SinceI (F ) is a free rightZF -module with{xi − 1|1 ≤ i ≤ m} as a basis, it follows from
(3.1) that

(s2 − 1)(s3 − 1) · · · (sp − 1)(sqmieip+1 − 1) ∈ In(F ),

for all i, 1 ≤ i ≤ m. The result now follows by induction hypotheses onn andp.

Theorem 3.2. If R,p andj are as in Lemma3.1, then

In+1(F )∩Ip(R)I (R ∩ γj (F )) = Ip+1(R)I (R ∩ γj (F ))
+ I (R ∩ F ′)Ip−1(R)I (R ∩ γj (F ))+ Ip(R)I (R ∩ γj+1(F )).

Proof. We can suppose, by a standard reduction argument, thatF is of finite rankm and
F/R admits a pre-Abelian presentation as in Lemma 3.1. Letz ∈ In+1(F )∩ Ip(R)I (R∩
γj (F )), then moduloIp+1(R)I (R ∩ γj (F ))+ I (R ∩ F ′)Ip−1(R)I (R ∩ γj (F )),

z �
∑
i≥1

(ri − 1)(s2i − 1) · · · (spi − 1)(s(p+1)i − 1),

(ski ∈ R, 2 ≤ k ≤ p and s(p+1)i ∈ R ∩ γj (F ))
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�
m∑
i=1

(x
ei
i �i − 1)(s2i − 1) · · · (spi − 1)(s(p+1)i − 1) (3.2)

�
m∑
i=1

(xi − 1)(s2i − 1) · · · (spi − 1)(sei(p+1)i − 1)

(mod I2(F )Ip−1(R)I (R ∩ γj (F )))
� 0 (mod In+1(F )). (3.3)

I (F ) being free rightZF -module, it follows from (3.3) that

(s2i − 1) · · · (spi − 1)(sei(p+1)i − 1) ∈ In(F ),

for all i, 1 ≤ i ≤ m. Therefore, by Lemma 3.1,s(p+1)i ∈ R ∩ γj+1(F ) for all i and hence
by (3.2),

z ∈ Ip+1(R)I (R ∩ γj (F ))+ I (R ∩ F ′)Ip−1(R)I (R ∩ γj (F ))
+ Ip(R)I (R ∩ γj+1(F )).

The other way inclusion is straightforward.

Proof of Theorem1.1. The proof follows by takingj = 1 in Theorem 3.2 and by the fact
that

I (R ∩ F ′)In−1(R) ⊂
n∑
i=1

In−i (R)I (γi(R) ∩ γi+1(F ))

⊂ In+1(F ) ∩ In(R).

Proof of Theorem1.2. Splitting of the exact sequence (1.1) implies that the sequence

1 → G/HG′ ⊗H ∩G′/H ′ → G/HG′ ⊗H/H ′

→ G/HG′ ⊗H/H ∩G′ → 1

is split exact. Karan and Vermani [6] proved that

G/HG′ ⊗H/H ′ ∼= I (G)I (H)/(I2(G)I (H)+ I2(H)).

Using similar arguments, we can prove that

G/HG′ ⊗H/H ∩G′ ∼= I (G)I (H)/(I2(G)I (H)

+ I (G)I (H ∩G′)+ I2(H)).

Let ψ be the restriction ofα (as defined in [6], Theorem 2.7) toG/HG′ ⊗ H ∩ G′/H ′.
Thenψ is one-one and

Imψ = (I2(G)I (H)+ I (G)I (H ∩G′)+ I2(H))/(I2(G)I (H)+ I2(H)).
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Hence we have the commutative diagram

G
HG′ ⊗ H∩G′

H ′ ½ G
HG′ ⊗ H

H ′ ³ G
HG′ ⊗ H

H∩G′

↓∼= ↓∼= ↓∼=
I2(G)I (H)+I (G)I (H∩G′)+I2(H)

I2(G)I (H)+I2(H)
½ I (G)I (H)

I2(G)I (H)+I2(H)
³ I (G)I (H)

I2(G)I (H)+I (G)I (H∩G′)+I2(H)
.

Therefore

G

HG′ ⊗ H ∩G′

H ′
∼= I2(G)I (H)+ I (G)I (H ∩G′)+ I2(H)

I2(G)I (H)+ I2(H)

∼= I (G)I (H ∩G′)
(I2(G)I (H)+ I2(H)) ∩ I (G)I (H ∩G′)

.

Also

G

HG′ ⊗ H ∩G′

H ′
∼= I (G)I (H ∩G′)
I2(G)I (H ∩G′)+ I (G)I (H ′)+ I (H)I (H ∩G′)

and we have the commutative diagram

G
HG′ ⊗ H∩G′

H ′ == G
HG′ ⊗ H∩G′

H ′

↓∼= ↓∼=
I (G)I (H∩G′)

I2(G)I (H∩G′)+I (G)I (H ′)+I (H)I (H∩G′) π³ I (G)I (H∩G′)
(I2(G)I (H)+I2(H))∩I (G)I (H∩G′)

whereπ is the natural projection. An easy diagram chasing shows thatπ is a monomor-
phism. This completes the proof.

COROLLARY 3.3

If G andH are as in Theorem1.2, then

(I2(G)I (H)+ I (G)I (H ∩G′)) ∩ I2(H)

= I (H)I (H ∩G′)+ I2(G)I (H) ∩ I2(H).

If R is any subgroup ofF , then the exact sequence 1−→ R ∩ F ′/R′ −→ R/R′ −→
R/R ∩ F ′ −→ 1 splits and the intersectionI3(F ) ∩ I2(R) can then be deduced from
Corollary 3.3 by taking intersection viaI (F )I (R).

Theorem 3.4. If R andS are subgroups ofF , then

ZFI (R)I (F )I (S) ∩ I2(RF ∩ S)
= I3(RF ∩ S)+ I (γ2(R

F ) ∩ S)I (RF ∩ S)+ I (RF ∩ S)I (RF ∩ S′).
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Proof. Observe that

ZFI (R)I (F )I (S) ∩ I2(RF ∩ S)
= ZFI (R)I (F )I (S) ∩ I (RF ∩ S)I (S) ∩ I2(RF ∩ S)
= (ZFI (R)I (F ) ∩ I (RF ∩ S)ZS)I (S) ∩ I2(RF ∩ S),
ZFI (S) being free leftZF -module.

= (I (RF ∩ S)I (S)+ ZFI (R)I (F ) ∩ I (RF ∩ S))I (S) ∩ I2(RF ∩ S).
(3.4)

Let x ∈ ZFI (R)I (F ) ∩ I (RF ∩ S) and letx = ∑
i mi(ai − 1), whereai ∈ RF ∩ S.

Takeh = Q
i a
mi
i , thenh − 1 � x (modI2(RF ∩ S)). Thush − 1 ∈ ZFI (R)I (F ) and

thereforeh ∈ γ2(R
F )∩ S, by [5], Theorem 2.3. This, then implies thatx ∈ I2(RF ∩ S)+

I (γ2(R
F ) ∩ S) and therefore by (3.4)

ZFI (R)I (F )I (S) ∩ I2(RF ∩ S)
= (I (RF ∩ S)I2(S)+ I (γ2(R

F ) ∩ S)I (S)) ∩ I2(RF ∩ S)
= I3(RF ∩ S)+ I (γ2(R

F ) ∩ S)I (RF ∩ S)+ I (RF ∩ S)I (RF ∩ S′),

by Theorem 2.3.

4. Identifications

We first prove the following:

Lemma4.1. If R and S are normal subgroups ofF such thatF/R andF/S are free-
Abelian, then

F ∩ (1 + I3(F )+ I (F )I (R)+ I (F )I (S)) = γ3(F )R
′S′[R, S].

Proof. Observe that r.h.s. is contained in l.h.s.. For the reverse inequality we takew ∈ F
such thatw − 1 ∈ I3(F ) + I (F )I (R) + I (F )I (S) and move on to show thatw �
1 (mod γ3(F )R

′S′[R, S]). SinceF/F ′ is free-Abelian, it follows that each ofR/F ′ and
S/F ′ is a direct summand ofF/F ′. We first choose a basisx1, x2, . . . , x

′
1, x

′
2, . . . for F

such thatx′
1, x

′
2, . . . is a basis forR (moduloF ′). By [9, Theorem 3.11],w ∈ [R,F ][S, F ]

and modulo [S, F ],

w �
Y
i≥1

[x′
i , fi ], (4.1)

wherefi ∈ F and therefore moduloI3(F )+ I (F )I (R)+ I (F )I (S),

0 � w − 1

�
∑
i≥1

((x′
i − 1)(fi − 1)− (fi − 1)(x′

i − 1))

�
∑
i≥1

(x′
i − 1)(fi − 1). (4.2)
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Therefore ifw ∈ F ∩(1+I (R)I3(F )) ⊂ F ∩(1+I (R)I (F )) = R′ ([5, Proposition 2.1]),
then by (4.6)

w ∈ R ∩ (1 + I4(R)+ I2(R)I (R ∩ F ′)+ I (R)I (R ∩ γ3(F ))).

SinceR/R ∩ F ′ is free-Abelian, using Theorem 2.2 and the filtration mapφ, we makew
belong to

(R ∩ F ′) ∩ (1 + I3(R ∩ F ′)+ I (R′)I (R ∩ F ′)
+ I (R ∩ F ′)I (R ∩ γ3(F )))γ4(R).

Now using similar arguments as in the proof of Theorem 1.3, we can show that

w ∈ γ4(R)γ2(R ∩ γ3(F ))[R ∩ F ′, R′ ∩ γ3(F )].

The reverse inclusion being trivial, we have

F ∩ (1 + I (R)I3(F )) = γ4(R)γ2(R ∩ γ3(F ))[R ∩ F ′, R′ ∩ γ3(F )].
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