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Abstract. Everybody admits that conjectures and questions provide impetus to research in Mathematics. The value distribution

theory is in no way an exception. In the article, we present some well-known conjectures and questions in the value distribution

theory and the research that they have influenced.

1. The Nevanlinna theory

The focal theme of the value distribution theory is to study

the behaviour of the roots of f (z) − a = 0 and the manner

in which those are distributed over the complex plane, where

a is a complex number and f is an entire or a meromorphic

function. Rolf Nevanlinna developed a systematic study of

the value distribution theory by means of his first and second

fundamental theorems. Let us now explain some preliminaries

of Nevanlinna theory.

Let f be a non-constant meromorphic function in the

complex plane C. We denote by n(r, a; f ) the number of roots,

counted according to multiplicity, of the equation f (z)−a = 0

in |z| ≤ r for a ∈ C ∪ {∞}, where the roots of f (z)− ∞ = 0

are taken as the roots of 1
f (z)

= 0. Henceforth the roots of

f (z)− a = 0 will be called the a-points of f . We put

N(r, a; f )=
∫ r

0

n(t, a; f )− n(0, a; f )
t

dt + n(0, a; f ) log r,

which is called the integrated counting function of the a-points

of f .

Also we define

m(r, f ) = 1

2π

∫ 2π

0
log+ |f (reiθ )|dθ

and call it the proximity function of f , where log+ x = log x

if x > 1 and log+ x = 0 if 0 ≤ x ≤ 1.

For a ∈ C we set m(r, a; f ) = m
(
r, 1
f−a

)
and for a = ∞

we put N(r,∞; f ) = N(r, f ) and m(r,∞; f ) = m(r, f ).

The quantity

m(r, a; f ) = 1

2π

∫ 2π

0
log+ 1

|f (reiθ )− a|dθ
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measures the mean deviation (in the reciprocal sense or, more

geometrically, as viewed from ∞) of the values of f from the

valuea for z varying over the circle |z| = r . To be more precise:

we see that when the values of f are relatively far away from

the value a for z on |z| = r , then m(r, a; f ) is small. On the

other hand, if the values of f are relatively close to the value

a for z on |z| = r , then m(r, a; f ) is large.

The quantity N(r, a; f ) is large or small according as

f (z)−a = 0 has relatively many or relatively few roots in the

closed disc bounded by |z| = r .

The function T (r, f ) = m(r, f ) + N(r, f ) is called

the characteristic function of f . The function T (r, f ) is an

increasing convex function of log r .

The first fundamental theorem of Nevanlinna {[36], see

also p. 5 [21]} states that

m(r, a; f )+N(r, a; f ) = T (r, f )+O(1)

for a ∈ C ∪ {∞}, where O(1) denotes a bounded quantity

depending only on a ∈ C ∪ {∞}.
From the first fundamental theorem of Nevanlinna it follows

that if f has many a-points in the set {z ∈ C : |z| ≤ r}, i.e.,

if N(r, a; f ) is large, then m(r, a; f ) is comparatively small,

i.e., on |z| = r the values of f are relatively far away from a.

On the other hand, if on |z| = r the values of f are relatively

close to the value a, then f has comparatively fewer a-points

in {z ∈ C : |z| ≤ r}.
The quantity

δ(a; f ) = 1 − lim sup
r→∞

N(r, a; f )
T (r, f )

is called the Nevanlinna deficiency of the value a. Clearly

0 ≤ δ(a; f ) ≤ 1 and the larger the value of δ(a; f ) the fewer

the number of a-points of f in C.
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We denote by N̄(r, a; f ) the integrated counting function

of distinct a-points of f . The quantity

�(a; f ) = 1 − lim sup
r→∞

N̄(r, a; f )
T (r, f )

is called the ramification index of the value a. Clearly

0 ≤ δ(a; f ) ≤ �(a; f ) ≤ 1 and the larger the value of

�(a; f ) the fewer the number of distinct a-points of f .

We usually denote by S(r, f ) any quantity, which satisfies

S(r, f ) = o(T (r, f )) as r → ∞ possibly outside a set of

finite linear measure.

2. Nevanlinna’s conjecture

Let us start with the most celebrated second fundamental

theorem of R. Nevanlinna {[36], see also p. 23 [50]}.

Theorem 1. Let f be a nonconstant meromorphic function

in C. Suppose that a1, a2, . . . , aq (q ≥ 3) be distinct finite

complex numbers. Then

(q − 2)T (r, f ) ≤
q∑
ν=1

N̄(r, aν; f )+ S(r, f ).

A meromorphic function a = a(z) is called a small function

of a meromorphic function f if T (r, a) = S(r, f ).

From the definition one may anticipate that a small func-

tion of f has reasonably slower growth in comparison to

that of f . On the other hand, a constant has no growth at

all. So it is a most natural curiosity to see the position of

Nevanlinna’s second fundamental theorem when the distinct

constants a1, a2, . . . , aq are replaced by distincts small func-

tions a1(z), a2(z), . . . , aq(z). The following conjecture of

R. Nevanlinna [36] well addresses this context:

Nevanlinna’s Conjecture. The second fundamental theorem

is also valid for small functions as targets.

Nevanlinna himself settled the conjecture for three small

functions as targets {[36]; see also p. 47, Theorem 2.5 [21]}.

Theorem 2. Let f be a nonconstant meromorphic func-

tion and a1, a2, a3 be three distinct small functions of f .

Then

T (r, f ) ≤
3∑
ν=1

N̄(r, 0; f − aν)+ S(r, f ).

Proof. We put φ(z) = (f−a1)(a2−a3)

(f−a3)(a2−a1)
. By the second funda-

mental theorem we get

T (r, φ) ≤ N̄(r,∞;φ)+ N̄(r, 0;φ)+ N̄(r, 1;φ)+ S(r, φ).

(1)

Now

T (r, f ) ≤ T (r, f − a3)+ T (r, a3)+O(1)

= T

(
r,

1

f − a3

)
+ S(r, f )

≤ T

(
r,
a3 − a1

f − a3

)
+ S(r, f )

≤ T

(
r, 1 + a3 − a1

f − a3

)
+ S(r, f )

= T

(
r,
f − a1

f − a3

)
+ S(r, f ).

Since T
(
r, a2−a3
a2−a1

) = S(r, f ), we get

T (r, f ) ≤ T

(
r,
f − a1

f − a3

)
+ S(r, f )

= T

(
r, φ

a2 − a1

a2 − a3

)
+ S(r, f )

≤ T (r, φ)+ T

(
r,
a2 − a1

a2 − a3

)
+ S(r, f )

= T (r, φ)+ S(r, f ). (2)

Also

T (r, φ) = T

(
r,
(f − a1)(a2 − a3)

(f − a3)(a2 − a1)

)

≤ T

(
r,
f − a1

f − a3

)
+ S(r, f )

= T

(
r, 1 + a3 − a1

f − a3

)
+ S(r, f )

≤ T

(
r,

1

f − a3

)
+ S(r, f )

= T (r, f − a3)+ S(r, f )

≤ T (r, f )+ S(r, f ). (3)

Combining (2) and (3) we get

T (r, φ) = T (r, f )+ S(r, f ). (4)

Hence S(r, φ) is replaceable by S(r, f ).

Mathematics Newsletter -2- Vol. 25 #4, March–June 2015



Finally the equations φ(z) = 0, 1,∞ have roots only if

eitherf (z)−aν(z) = 0 for ν = 1, 2, 3 or if two of the functions

aν’s become equal. Thus

N̄(r,∞;φ)+ N̄(r, 0;φ)+ N̄(r, 1;φ)

≤
3∑
ν=1

N̄(r, 0; f − aν)+ N̄(r, 0; a1 − a2)

+ N̄(r, 0; a2 − a3)+ N̄(r, 0; a3 − a1)

=
3∑
ν=1

N̄(r, 0; f − aν)+ S(r, f ). (5)

Now by (1), (4) and (5) we get T (r, f ) ≤ ∑3
ν=1

N̄(r, 0; f − aν)+ S(r, f ). �

The general case remained open till 2004. Let us now present

a brief description of the research done on “Nevanlinna’s

Conjecture”.

After Nevanlinna it is C. T. Chuang [8] who worked on the

conjecture in 1964. We state the result of Chuang as follows:

Theorem 3. Let f be a nonconstant meromorphic function.

Let ψl(l = 1, 2, . . . , p;p ≥ 1) be p linearly distinct

meromorphic functions satisfying T (r, ψl) = o{T (r, f )} as

r → ∞, l = 1, 2, . . . , p, and their q linearly distinct combi-

nations with constant coefficients be

φj =
p∑
k=1

Cjkψk, j = 1, 2, . . . , q; q ≥ 2.

Then

(q − 1)T (r, f ) ≤
q∑
j=1

Np(r, 0; f − φj )

+ pN̄(r,∞; f )+ S(r, f ),

where S(r, f ) = O{log T (r, f ) + log r} as r → ∞ through

all values if f is of finite order and outside a set of finite

linear measure otherwise, and Np(r, 0; f − φj ) denotes the

integrated counting function of the roots off−φj = 0, where a

root of multiplicity m being counted m times if m ≤ p and p

times if m > p.

Following theorem readily follows from the above result of

Chuang.

Theorem 4. Suppose that f is a meromorphic function in the

complex plane andaj = aj (z) (j = 1, 2, 3, . . . , q)are distinct

small functions of f . Then

(q − 1)T (r, f ) ≤
q∑
j=1

N(r, 0; f − aj )

+ qN̄(r,∞; f )+ S(r, f ).

Since for an entire function f , N̄(r,∞; f ) ≡ 0, it is easy

to note that for entire functions, Chuang’s result is the second

fundamental theorem for small functions as targets. After the

work of C. T. Chuang, in 1986 G. Frank and G. Weissenborn

[13] made a major break through by considering rational func-

tions as targets and proved the following result.

Theorem 5. Suppose that f is a transcendental meromorphic

function in the complex plane and a1, a2, . . . , aq are distinct

rational functions. Then for any positive number ε we

have

(q − 1 − ε)T (r, f ) ≤
q∑
j=1

N(r, 0; f − aj )

+N(r,∞; f )+ S(r, f ).

In the same year 1986 N. Steinmetz [41] was able to tackle

the general small functions instead of rational functions and

proved the following:

Theorem 6. Suppose that f is a transcendental meromorphic

function in the complex plane and a1, a2, . . . , aq are distinct

small functions of f . Then for any positive number ε we have

(q − 1 − ε)T (r, f ) ≤
q∑
j=1

N(r, 0; f − aj )

+N(r,∞; f )+ S(r, f ).

Proof. We write A = (a1, a2, . . . , aq) and let L(s,A)

be the vector space generated by a
n1
1 a

n2
2 · · · anqq , where

nj (j = 1, 2, 3, . . . , q) are nonnegative integers such that

n1 + n2 + · · · + nq = s.

We denote by dimL(s,A), the dimension of the vector

space L(s,A). For a fixed s, let dimL(s,A) = n and let

b1, b2, . . . , bn be a basis of L(s,A).

Let dimL(s + 1, A) = k and β1, β2, . . . , βk be a basis

of L(s + 1, A). Then n ≤ k. We now claim that for any

given ε(> 0), there exists a positive integer s such that
k
n
< 1 + ε.
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On the contrary,

k = dimL(s + 1, A) ≥ (1 + ε) dimL(s,A) = (1 + ε)n

holds for any natural number s. Hence

k ≥ (1 + ε)2 dimL(s − 1, A) ≥ · · · ≥ b(1 + ε)s,

where b = dimL(1, A) is a constant.

On the other hand,

k = dimL(s + 1, A) ≤
(
q + s

s + 1

)
≤ csq−1,

where c is a constant. Therefore b(1 + ε)s ≤ csq−1 for

s = 1, 2, 3, . . . and so log b + s log(1 + ε) ≤
log c + (q − 1) log s, which is a contradiction. Hence for any

given ε(> 0), there exists an integer s such that k
n
< 1 + ε.

We now select s such that k
n
< 1 + ε. Let P(f ) =

W(β1, β2, . . . , βk, f b1, f b2, . . . , f bn). Then we can write

P(f ) = f n
∑

Cp(z)

n+k−1∏
j=0

(
f (j)

f

)pj
,

where Cp(z) is a small function of f . Then

m(r, P (f )) ≤ nm(r, f )+ S(r, f ). (6)

Also using a property of Wronskian determinant we have

P(f ) = f n+kW
(
β1

f
,
β2

f
, . . . ,

βk

f
, b1, b2, . . . , bn

)
.

Since the poles of P(f ) come from the poles of

βi(i = 1, 2, 3, . . . , k), bj (j = 1, 2, . . . , n) or f , we see that

N(r, P (f )) ≤ (n+ k)N(r, f )+ S(r, f ). (7)

From (6) and (7) we get

T (r, P (f )) ≤ nT (r, f )+ kN(r, f )+ S(r, f ). (8)

If a is a linear combination of aj (j = 1, 2, . . . , q), then using

the property of a Wronskian determinant we have

P(f − a) = P(f ). (9)

Also we can write

P(f ) = f nQ

(
f ′

f

)
, (10)

where Q
(
f ′
f

)
is a differential polynomial in f ′

f
.

Let uj = f − aj and Qj = Q
(u′

j

uj

)
for j = 1, 2, . . . , q.

Then from (9) and (10) we obtain P(f ) = P(uj ) = unjQj for

j = 1, 2, . . . , q. Hence 1
(f−aj )n = Qj

P (f )
and so

1

|f − aj | = |Qj | 1
n

|P(f )| 1
n

, (11)

for j = 1, 2, . . . , q.

Let F(z) = ∑q

j=1
1

f (z)−aj (z) . Then by a result of

C. T. Chuang we get

q∑
j=1

m

(
r,

1

f − aj

)
= m(r, F )+ S(r, f ). (12)

By (11) we get

|F(z)| ≤
q∑
j=1

1

|f (z)− aj (z)| ≤ 1

|P(f )| 1
n

q∑
j=1

|Qj | 1
n .

From this and (8) we deduce that

m(r, F ) ≤ 1

n
m

(
r,

1

P(f )

)
+ 1

n

q∑
j=1

m(r,Qj)+O(1)

= 1

n
T (r, P (f ))− 1

n
N

(
r,

1

P(f )

)
+ S(r, f )

≤ T (r, f )+ k

n
N(r, f )− 1

n
N

(
r,

1

P(f )

)
+ S(r, f ).

(13)

From (12) and (13) we get

m(r, f )+
q∑
j=1

m

(
r,

1

f − aj

)

≤
(

1 + k

n

)
T (r, f )+ S(r, f )

≤ (2 + ε)T (r, f )+ S(r, f ).

Now by the first fundamental theorem we obtain

(q − 1 − ε)T (r, f ) ≤
q∑
j=1

N(r, 0; f − aj )

+N(r,∞; f )+ S(r, f ). �

In 2001 H. Y. Li and Q. C. Zhang [30] improved the result

of Steinmetz and proved the following theorem.

Theorem 7. Suppose that f is a transcendental meromorphic

function in the complex plane and a1, a2, . . . , aq are q distinct
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