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The Standard and the Super-standard
(Canonical and Grand Canonical)

Ensembles

3-1 Introducing the Standard (Canonical) Ensemble

Like I said before, the homogeneous ensemble is not so handy after all
as a working tool. It is conceptually easy, but does not lend itself to a
straightforward calculation of thermodynamic quantities. In particular, it
is a precondition that the system be very large in order that any explicit
result may at all be arrived at. Thus, we had to cover a lot of ground to
arrive at the entropy of as simple a system as the classical ideal gas, and
then too we had to assume that the gas is close to the thermodynamic limit.

A much better approach, if less fundamental from the conceptual point
of view, is to use what may be termed thestandard ensemble(usually
called thecanonical ensemble), based on thetemperature specificationof
the system under consideration.

The temperature specification corresponds to a situation in which the
system is not isolated from its surroundings, but is instead kept in thermal
contact with a ‘reservoir’ at some specified temperature, say,T .

In thermodynamics and statistical mechanics, a reservoir means a large
body, large compared to the system or systems under consideration, that
can exchange heat with these systems without undergoing any appreciable
change in temperature. For instance, the atmosphere plays the role of a
reservoir for bodies of not too large dimensions, in numerous situations of
practical interest.

Just as a body isolated from its surroundings goes over, in the long run,
to an equilibrium configuration characterised by some specific value of
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It is more useful to write this equality in terms of logarithms:

lnP(9(E)) = lnC + lnW(E − E), (3-2)

and then to expand the second term on the right hand side in a Taylor’s
series :

lnP(9(E)) = lnC + lnW(E )− d lnW(E )

dE
E. (3-3)

The subsequent terms in the series are really insignificant since,R being
much larger thanS , E is on the average infinitesimally small compared
to E .

The second term on the right-hand side of (3-3) does not refer to the
systemS , and so we lump it together with the first term so as to obtain,
say,

lnP(9(E)) = lnA − d lnW(E )

dE
E, (3-4)

whereA is some new constant. In accordance with the second fundamental
postulate (1-44), lnW(E ) is just k−1

B timesS(R )(E ), the entropy of
R at internal energyE , and thus the derivative in (3-4) is nothing
but (kBT )−1, T being the temperature of the reservoir, andalso the
temperature of the systemS .

If S happens to be a small system so that thermodynamic functions do
not make sense for it, then wedefineits temperature to be the temperature
with which it is in equilibrium.

We thus arrive at

P(9(E)) = A exp(−E/(kBT ) ). (3-5a)

In this equation,A can evidently be looked upon as a normalisation con-
stant, to be determined from the fact that the total probability of occurrence
of all the distinct states of the system is to be 1. The quantity(kBT )

−1

is so all-pervasive in equations of statistical mechanics that it is only fair
to reserve a separate symbol for it. Since (2-62) tells us that it is just the
undetermined multiplierβ of Chapter 2, we write

P(9(E)) = A exp(−βE ). (3-5b)

Summing over all the distinct states9 of the system and noting that the
summed probability must be unity, we find
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Fig. 3-1 Illustrating the way the energy distribution functionp(E) is peaked
around an energy value approximately equal to the mean energy.

Sincep(E) gives the probability in the ensemble for energyE, we have,
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+ 〈E〉2, (3-25)

where (3-9c) has been made use of.
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or, with the help of (3-48b), to

S̃ = T−1〈E〉 − T−10̃ − µT−1〈N〉. (3-49b)

This relation is analogous to the relation between the entropy, the inter-
nal energy, the super-potential, and the number of particles of a thermo-
dynamic system.

Show further that for a thermodynamic system, (3-48b) yields,

0̃ = 0. (3-50)

Finally, noting that for a thermodynamic system〈E〉 and 〈N〉 reduce
respectively to the internal energyU and the particle numberN , show
that in the thermodynamic limit (3-49b) leads to

S̃ = S (3-51)

Thus, the super-potential0 for a thermodynamic system is related to the
super-partition function as

exp(−β0) = Z , (3-52a)

or, 0 = −β−1 ln Z , (3-52b)

which are relations of fundamental importance for the statistical mechanics
of a thermodynamic system in the super-standard ensemble.

3-8.4 Fluctuations in the particle number

The mean squared particle number in the super-standard ensemble is

〈N2〉 = Z −1
∑
9

N2 exp(−β(E − µN)). (3-53)

Problem 3-10

Prove that (3-53) can be written in the alternative form

〈N2〉 = Z −1β−2∂
2Z

∂µ2
, (3-54)

and then use (3-40b) to derive, for the fluctuation in particle number,

(1N)2 = 〈N2〉 − 〈N2〉 = β−1∂〈N〉
∂µ

. (3-55)


